
Seasonal Predictability of Summer Rainfall over South America

RODRIGO J. BOMBARDI

Department of Geography, Texas A&M University, College Station, Texas, and Department of Atmospheric,

Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

LAURIE TRENARY, KATHY PEGION, BENJAMIN CASH, TIMOTHY DELSOLE,
AND JAMES L. KINTER III

Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

(Manuscript received 29 March 2018, in final form 25 June 2018)

ABSTRACT

The seasonal predictability of austral summer rainfall is evaluated in a set of retrospective forecasts

(hindcasts) performed as part of the Minerva and Metis projects. Both projects use the European Centre for

Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) coupled to the Nucleus for

European Modelling of the Ocean (NEMO). The Minerva runs consist of three sets of hindcasts where the

spatial resolution of the model’s atmospheric component is progressively increased while keeping the spatial

resolution of its oceanic component constant. In theMetis runs, the spatial resolution of both the atmospheric

and oceanic components are progressively increased. We find that raw model predictions show seasonal

forecast skill for rainfall over northern and southeastern SouthAmerica. However, predictability is difficult to

detect on a local basis, but it can be detected on a large-scale pattern basis. In addition, increasing horizontal

resolution does not lead to improvements in the forecast skill of rainfall over South America. A predictable

component analysis shows that only the first predictable component of austral summer precipitation has

forecast skill, and the source of forecast skill is El Niño–Southern Oscillation. Seasonal prediction of pre-

cipitation remains a challenge for state-of-the-art climate models. Positive benefits of increasing model res-

olution might be more evident in other atmospheric fields (i.e., temperature or geopotential height) and/or

temporal scales (i.e., subseasonal temporal scales).

1. Introduction

North and central South America receive more than

50% of their annual precipitation during the austral

summer months [December–February (DJF)]. The heavy

precipitation is associated with the peak phase of the

South American monsoon system. During this period,

the most intense convective activity over land is cen-

tered over the southern Amazon and central-western

Brazil, the core region of the monsoon (Zhou and Lau

1998; Vera et al. 2006; Marengo et al. 2012; Carvalho

and Cavalcanti 2016). An important feature of the

South American monsoon is the presence of the South

Atlantic convergence zone (SACZ), a northwest–

southeast-oriented band of cloudiness and heavy pre-

cipitation that extends from the core monsoon region

to the subtropical South Atlantic (e.g., Carvalho et al.

2002, 2004). Despite the continuous development and

improvement of climate models, the deterministic

seasonal prediction of precipitation over the core

monsoon region remains a challenge (Becker et al.

2014; Jia et al. 2015; Osman and Vera 2017).

Early attempts to evaluate the predictability of pre-

cipitation over South America relied on simulations

with coarse-resolution global atmospheric models using

prescribed observed sea surface temperature (SST; e.g.,

Barreiro et al. 2002, 2005; Misra 2004; Taschetto and

Wainer 2008). Commonly known as Atmospheric Model

Intercomparison Project (AMIP)-style runs (e.g., Gates

et al. 1999), these experiments consisted of relatively

long integrations (;30 years) and relatively few ensem-

ble members (five members). They found that summer

precipitation over equatorial South America is predict-

able, while poor forecast skill is found over subtropi-

cal and extratropical regions. The high predictability of
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precipitation over the equator is because the intertropical

convergence zone (ITCZ) is dominated by sea surface

temperature forcing (Taschetto and Wainer 2008). The

SACZ, however, is less predictable than the ITCZ. In

addition, the oceanic portion of the SACZ is more pre-

dictable than its continental portion, which is dominated

by internal variability (Barreiro et al. 2002, 2005; Taschetto

and Wainer 2008). Hirata and Grimm (2018) showed that

precipitation associated with the SACZ is predictable

within a 2-week lead time when the simulations are cali-

brated. However, the seasonal prediction of the SACZ

remains a challenge.

More recently, seasonal predictability studies have

moved away from AMIP-type of runs and focused

on dynamical seasonal prediction (Shukla et al. 2000),

which were shown to yield better results (Misra 2004).

Even using state-of-the-art global coupled climate

models, skillful seasonal predictability of the South

American summer rainfall is largely confined to equa-

torial regions of South America (Becker et al. 2014;

Jia et al. 2015; Osman and Vera 2017). Recent work

also documents moderate skill over southeast South

America (Becker et al. 2014; Jia et al. 2015; Osman and

Vera 2017) and the extratropical Andes (Osman and

Vera 2017).

Jia et al. (2015) found that increased atmospheric and

land resolution combined with statistical optimization

analysis (predictable component analysis) results in

improved seasonal forecasts of 2-m temperature and

precipitation. In this work, we build on their findings by

evaluating the predictability of summer precipitation

over South America using a set of high-resolution ret-

rospective forecasts. These reforecasts have a range of

spatial resolutions for the model’s atmospheric compo-

nent alone as well as a range of spatial resolutions of

both the atmospheric and oceanic components. The

original aspects of this work include the evaluation of

the incremental increase in resolution of both atmo-

spheric and oceanic model components as well as the

predictable component analysis of summer precipitation

focusing on South America.

Section 2 describes the data, model, and the simula-

tions. The model representation of DJF precipitation is

presented in section 3. Section 4 presents a predictability

analysis for the different model simulations. The pre-

dictability of large-scale patterns of precipitation over

South America is explored in section 5. Section 6 pres-

ents the conclusions.

2. Data, model, and experiments

We evaluate the seasonal predictability of the austral

summer (DJF) rainfall over South America using ret-

rospective forecasts (hindcasts) performed as part of the

Minerva (Cash et al. 2017) and Metis (in progress)

projects. The hindcasts were carried out using the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Integrated Forecast System (IFS) coupled

to the Nucleus for European Modelling of the Ocean

(NEMO) (Molteni et al. 2011). Hereafter we will refer

to the coupled system as IFS_NEMO.

Minerva runs were performed using a linear grid while

Metis runs were carried out using a cubic-octahedral

grid (Dando 2015). Hindcasts in the Minerva project

were performed for three different atmospheric resolu-

tions (T319, T639, and T1279, with equivalent grid

spacing of 64, 32, and 16km, respectively), each coupled

to the same 18 ocean resolution refined to 1/38 near the
equator. Integrations in the Metis project were carried

out for three different atmospheric resolutions (Tco199,

Tco639, and Tco1279, with equivalent grid spacing of 54,

16, and 9km, respectively), each coupled to an ocean

model with different resolutions (18, 0.258, and 0.258,
respectively) also refined near the equator (see Table 1).

In this work, we analyze a subset of the hindcasts per-

formed under projects Minerva and Metis. For consis-

tency, we selected only hindcasts starting on 1 November

that consist of 7-month-long integrations, with 15 en-

semble members for each year in a 30-yr period. There-

fore, all results presented in this study refer to DJF

averages, which start at a 1-month lead time from model

initialization. Table 1 summarizes the hindcasts used in

this study. Hindcasts were validated against precipitation

data from the Climate Prediction Center Unified Pre-

cipitation (CPC_UNI; Chen et al. 2008; Xie et al. 2007),

with 0.58 resolution. In cases where comparisons require

TABLE 1. Experiment descriptions.

Expt Period

Spatial resolution

Atmosphere component Ocean component

Minerva T319 1980–2020 ;64 km 18 (refined to 1/38 near the equator)

Minerva T639 1980–2010 ;32 km 18 (refined to 1/38 near the equator)

Minerva T1279 1980–2010 ;16 km 18 (refined to 1/38 near the equator)

Metis Tco199 1986–2015 ;54 km 18 (refined to 1/38 near the equator)

Metis Tco639 1986–2015 ;16 km 0.258 global (no refinement)
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matching grids, we first calculated DJF means for each

year and then we regridded the datasets into the coarser

grid (Minerva T319) using a linear interpolation. This

same process was applied to observations given that the

Minerva T319 grid is coarser than the grids of observed

precipitation.

3. IFS_NEMO representation of DJF precipitation

Figures 1 and 2 show the mean and the interannual

standard deviation of seasonal means of summer (DJF)

precipitation simulated by theMinerva (1980–2010) and

Metis (1986–2015) hindcasts, as well as the observed

values from CPC_UNI (1980–2015). Although there are

differences among experiments, all Minerva and Metis

runs reproduce the CPC_UNI mean spatial patterns of

DJF precipitation, including low precipitation values

over northeast Brazil and the maximum precipitation

over the Amazon and central Brazil (Fig. 1). The model

is less accurate in representing the spatial pattern of the

interannual standard deviation of DJF precipitation, as

it underestimates the variability of summer precipitation

over the Amazon basin (Fig. 2).

Themodel shows strong negative biases over Peru and

along the Andes (Fig. 3), likely due to the effects of

topography in the model allied to sampling issues in the

observations. Positive biases are found over the mouth

of the Amazon River in all experiments. Metis experi-

ments show negative biases over the western Amazon

(Figs. 3d,e). To some degree all models show negative

precipitation biases over Paraguay and central-western

Brazil (Fig. 3).

FIG. 1. Mean DJF precipitation for (a) Minerva T319, (b) Minerva T639, (c) Minerva T1279, (d) Metis Tco199, (e) Metis Tco639, and

(f) CPC_UNI. Values calculated for the approximate whole period of available simulations (Minerva 1980–2010; Metis 1986–2015; CPC_

UNI 1980–2015).
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4. Predictability of DJF precipitation over South
America

Skillful prediction of monsoonal precipitation is a

challenge for current global climatemodels (e.g., Becker

et al. 2014) because the dynamics necessarily involve the

interaction of multiple scales of motion and different

underlying dynamics (Vera et al. 2006; Marengo et al.

2012). A simple metric to evaluate prediction skill is the

anomaly correlation coefficient at each grid point in-

dependently. Figure 4 shows the anomaly correlation

between DJF precipitation anomalies from CPC_UNI

and the reforecasts from the Minerva and Metis pro-

jects. The anomaly correlation was calculated using the

ensemble mean of each year of simulation of each ex-

periment. We chose to use CPC_UNI to validate the

reforecasts because this dataset comprises the whole

period of simulations. The IFS_NEMO has statistically

significant anomaly correlations over part of the La

Plata basin and northern South America, including part

of northeastern Brazil. No significant correlations are

present over central South America, the core of the

South American monsoon. Figure 4f shows the contours

of the areas with statistically significant anomaly corre-

lations for experiments Minerva T319 and T639 and

Metis Tco199. Apart from small localized differences,

the regions that show statistically significant anomaly

correlation (or forecast skill) are very similar across

experiments.

We have established that the IFS_NEMO has skill

in predicting DJF precipitation over northern South

America and that increasing spatial resolution had no

FIG. 2. Interannual standard deviation of DJF precipitation for (a) Minerva T319, (b) Minerva T639, (c) Minerva T1279, (d) Metis

Tco199, (e) Metis Tco639, and (f) CPC_UNI. Values calculated for the whole period of available simulations (Minerva 1980–2010; Metis

1986–2015; CPC_UNI 1980–2015).
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clear impact in forecast skill (Fig. 4).We now investigate

if the increase in resolution leads to increased pre-

dictability in the model. Therefore, we performed a

signal-to-noise analysis of the Minerva and Metis sim-

ulations. The unbiased signal variance, s2
S, and noise

variance, s2
N , are calculated according to Eqs. (1) and

(2), respectively:

s2
S 5

1

N2 1
�
N

i

[(X
i
)2] , (1)

s2
N 5

1

N

 
�
N

i

(
1

M2 1
�
M

j

[(X 0
ij)

2
]

)!
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where N is the number of years, M is the number of

ensemble members per year, and Xi is the ensemble

mean of precipitation anomalies for year i. The anom-

alies were calculated (at each grid point) by removing

the mean (Fig. 1) from each ensemble member of each

year. X 0
ij 5Xij 2Xi, where Xij represents the pre-

cipitation anomalies for each year i and each ensemble

member j. The signal variance is determined based on

the interannual variance of the ensemble mean and

represents the predictable signal, while the noise vari-

ance is determined based on the variability of individual

ensemble members about the ensemble mean and rep-

resents the unpredictable noise. The ratio between sig-

nal and noise variances is a measure of predictability.

Where the signal is larger than the noise, there is pre-

dictability. Conversely, no predictability exists where

the signal is smaller than the noise. In a perfect model,

this ratio is related to the expected anomaly correlation

skill as a function of the number of ensemble members

(e.g., Sardeshmukh et al. 2000; Kumar and Hoerling

2000; Compo and Sardeshmukh 2004). This relationship

allows us to diagnose the skill of precipitation in terms of

FIG. 3. DJF precipitation bias (with

respect to CPC_UNI) for (a) Minerva

T319, (b) Minerva T639, (c) Minerva

T1279, (d)Metis Tco199, and (e)Metis

Tco639. Only periods when simulations

and observations coincide were used.
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the predictable signal and unpredictable noise and to

understand how changes in resolution impact these

components of the predictability.

The signal variance (Fig. 5) is highest over parts of

northern South America and over the equatorial At-

lantic Ocean, consistent with the region of highest skill

(Fig. 4). A secondary signal maximum is present over

the La Plata basin region (Fig. 5). In the Metis experi-

ment (Figs. 5d,e), there is a slight decrease in signal

variance as the spatial resolution of the experiments

increases (Fig. 5f). This effect is very evident over

equatorial regions, theAndes, southeast SouthAmerica,

and the subtropical South Atlantic Ocean. This indicates

that increasing resolution does not improve the predict-

able signal in these experiments, consistent with the lack of

improved skill based on resolution.

The noise variance is largest over central and south-

eastern Brazil, the equatorial Atlantic Ocean, and the

La Plata basin region (Fig. 6). No significant differences

in noise variance are found among the Minerva experi-

ments (Figs. 6a–c). However, the Metis experiments

(Figs. 6d,e) show a decrease in noise variance over the

equatorial oceans and northeast Brazil as the spatial

resolution increases (Fig. 6f). The main source of noise

over central and southeast Brazil is probably associated

with the South Atlantic convergence zone, which is

FIG. 4. DJF precipitation anomaly correlation (against CPC_UNI) for (a) Minerva T319, (b) Minerva T639, (c) Minerva T1279,

(d) Metis Tco199, and (e) Metis Tco639. Only periods when simulations and observations coincide were used. Prior to the calculation of

correlations, we first calculatedDJFmeans for each year of each dataset and then we regridded the datasets into the coarser grid (Minerva

T319) using a linear interpolation. The stippling shows regions that are statistically significant at the 5% level according to a t test. (f) Areas

with statistically significant anomaly correlation values for Minerva T319 (thick red line), Minerva T639 (dashed black line), and Metis

Tco199 (thick blue line).
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strongly influenced by intraseasonal variability (Jones

andCarvalho 2002;Muza et al. 2009; Gonzalez andVera

2014; Vera et al. 2018).

The signal-to-noise analysis shows predictability of

DJF precipitation only over the equatorial Pacific Ocean

(Fig. 7). Therefore, we found that the model has skill

(Fig. 4) but lacks predictability (Fig. 7). These two

seemingly contradictory statements could be explained

by the fact that a large-scale pattern in the model might

be predictable but this predictability might not be de-

tectable by a univariate analysis if the variability at the

individual grid cells is dominated by noise. Interestingly,

the predictability of DJF precipitation in the Metis ex-

periment decreases over northern South America with

increasing resolution (Fig. 7f). The lack of predictability

over the domain of the South American monsoon is

probably because monsoons are affected by a range of

phenomena with different time scales. Moreover, local

processes play a large role in monsoon variability (e.g.,

Vera et al. 2006; Marengo et al. 2012). Such processes

present a challenge for seasonal forecasts and, therefore,

the increase in spatial resolution results in a decrease of

signal variance.

5. Predictability of large-scale summer precipitation
patterns over South America

a. Eigenvectors of the Laplace operator

While the local significance test found no evidence of

predictability in the model (Fig. 7), it is possible that

there are large-scale patterns that contribute to the skill

FIG. 5. Forecast signal variance forDJF precipitation for (a)MinervaT319, (b)Minerva T639, (c)Minerva T1279, (d)Metis Tco199, and

(e) Metis Tco639. The signal was calculated for the whole period of available data (Minerva 1980–2010; Metis 1986–2015). (f) The ratio

betweenMetis Tco199 andMetis Tco639. The results in (a)–(e) were calculated on the native grid, while the results in (f) were calculated

regridding datasets to a coarser grid. The stippling shows regions that are statistically significant at the 5% level according to an F test.
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of the model. To isolate these large-scale patterns, the

anomalous precipitation fields are projected onto the

Laplacian operator (DelSole and Tippett 2015) over

South America. As noted by DelSole et al. (2017),

Laplacian eigenvectors provide a convenient orthogonal

basis set that is ordered by length scale. For instance,

Fourier series used to decompose time series are a

special case of Laplacian eigenvectors. In this work, we

use eigenvectors of the Laplace operator to identify

spatial patterns that are orthogonal with respect to an

area-weighted inner product. Analogously to time series

decomposition, these spatial patterns represent the de-

composition of the domain by length scale. The eigen-

vectors of the Laplace operator over South America

were obtained using a Green’s function method (DelSole

and Tippett 2015).

The Laplacian eigenvectors provide a set of orthog-

onal large-scale patterns (Fig. 8) that are domain de-

pendent but data independent, which makes them

suitable for comparing different simulations over the

same domain. The first eigenvector is not shown because

it equals a spatially uniform pattern over the domain

(i.e., the largest spatial scale that fits in the domain). The

second and third eigenvectors measure the east–west

and north–south gradients, respectively. The next two

eigenvectors correspond to a tripole and quadrupole,

etc., of decreasing length scale.

b. Predictable component analysis

Weprojected theDJFprecipitation anomaly fields onto

the eigenvectors of the Laplacian operator over South

America. Then, we applied a predictable component

FIG. 6. Forecast noise variance forDJF precipitation for (a)Minerva T319, (b)Minerva T639, (c)Minerva T1279, (d)Metis Tco199, and

(e) Metis Tco639. The noise was calculated for the whole period of available data (Minerva 1980–2010; Metis 1986–2015). (f) The ratio

betweenMetis Tco199 andMetis Tco639. The results in (a)–(e) were calculated on the native grid, while the results in (f) were calculated

regridding datasets to a coarser grid. The stippling shows regions that are statistically significant at the 5% level according to an F test.
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analysis (PrCA; DelSole and Tippett 2008) to the fields

of projected precipitation anomalies following the

methodology used in DelSole et al. (2017). Similar to

an empirical orthogonal function (EOF) analysis, the

PrCA method is based on solving an eigenvalue prob-

lem. However, instead of maximizing the variance, like

an EOF, the PrCA maximizes the signal-to-noise ratio

[the ratio between Eqs. (1) and (2)]. In other words, the

PrCA finds the combination of patterns that maximizes

the hindcast signal-to-noise ratio. For example, when

the eigenvalues (and corresponding eigenvectors) are

ordered in descending order, the first eigenvector

maximizes the signal-to-noise ratio. The second ei-

genvector maximizes the signal-to-noise ratio subject

to being uncorrelated with the first eigenvector, and so

on. These solutions define the predictable components,

the first of which will be called the ‘‘most predictable

component.’’

Figure 9a shows the relationship between the maxi-

mized signal-to-noise ratio of the main predictable

component (resulting from the PrCA) and the number

of Laplacian eigenvectors considered in the PrCA cal-

culation. The maximized signal-to-noise ratio increases

as the number of Laplacian eigenvectors increases, but

eventually plateaus. With the exception of Metis Tco639,

little increase in signal-to-noise ratio is observed after

the tenth Laplacian eigenvector is introduced.Moreover,

considering more than 10 Laplacian eigenvectors did not

change our results significantly (not shown). Therefore,

we choose to fix the number of Laplacian eigenvectors

FIG. 7. Signal-to-noise ratio of DJF precipitation for (a) Minerva T319, (b) Minerva T639, (c) Minerva T1279, (d) Metis Tco199, and

(e) Metis Tco639. The signal-to-noise ratio was calculated for the whole period of available data (Minerva 1980–2010; Metis 1986–2015).

(f) The ratio betweenMetis Tco199 andMetis Tco639. The results in (a)–(e) were calculated on the native grid, while the results in (f) were

calculated regridding datasets to a coarser grid. The stippling shows regions that are statistically significant at the 5% level according to an

F test. No test was applied to (f) because the F test does not test the significance of a ratio of ratios.
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used in the PrCA at 10 (Fig. 9a). Figure 9b presents

the maximized signal-to-noise ratio for each predict-

able component considering the first 10 Laplacian

patterns. Note that all 10 predictable components for

all experiments are statistically significant at the

95% confidence level according to a Monte Carlo (e.g.,

Wilks 2011) simulation. However, most of the pre-

dictability comes from the first predictable component,

FIG. 8. Laplacian eigenfunctions 2–10 over South America.

8190 JOURNAL OF CL IMATE VOLUME 31

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 04:46 PM UTC



FIG. 9. (a) Maximized forecast signal-to-noise ratio of the main predictable component

as a function of the number of the Laplacian eigenvectors included in the PrCA. Note the

discontinuity in the y axis between values 8 and 9. (b) Maximized forecast signal-to-noise

ratio for each predictable component considering the first 10 Laplacian eigenvectors. Note

the discontinuity in the y axis between values 0.8 and 3.0. Lines show the values of the 5th and

95th percentiles of maximized signal-to-noise ratios according to a Monte Carlo simulation,

indicating that the signal-to-noise ratios are statistically significant at the 5% level.
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with only marginal significance for the higher-order

components (Fig. 9b).

In the Minerva experiment, the maximized signal-to-

noise ratio is larger when the spatial resolution of the

atmospheric component is lower. In contrast, in the

Metis experiment, the maximized signal-to-noise ratio is

larger when the spatial resolution of the atmospheric

and oceanic components is higher. In addition, Minerva

T639 and Metis T1279 show very similar results, prob-

ably due to the fact they have the same spatial resolution

for the atmospheric component. The same is true for

Minerva T319 and Metis T199. This result suggests that

there might be an optimal ratio between the spatial

resolution of the atmospheric and oceanic component in

the IFS_NEMO that maximizes the model’s forecast

signal-to-noise ratio.

The spatial pattern of the first predictable component

consists of a dipole between northern and southern

South America for all Minerva and Metis experiments.

This result is consistent with the findings of Jia et al.

(2015). The overall amplitude of this dipole pattern is

larger in the Minerva experiments than in the Metis

experiments (Fig. 10). This dipole pattern suggests an

influence of El Niño–Southern Oscillation (ENSO),

where warm ENSO events cause dry conditions over

northern South America and wet condition over south-

eastern South America (e.g., Ropelewski and Halpert

1987; Grimm et al. 2000).

Figure 11a shows the time series of the first predict-

able component for the Minerva T319 experiment as

well as the time series of projected DJF precipitation

anomalies and a simple ENSO index. Since it is not

possible to calculate a PrCA for observations, the ob-

servedDJF precipitation anomalies were projected onto

the matrix of maximized signal-to-noise ratio of each

Minerva and Metis experiment. Although this is not a

straightforward comparison between simulations and

observations, it allows us to evaluate how well the time

FIG. 10. Spatial pattern of the first

predictable component of DJF precipi-

tation for (a)Minerva T319, (b)Minerva

T639, (c) Minerva T1279, (d) Metis

Tco199, and (e) Metis Tco639.
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series of the predictable component represent the time

series of observed precipitation for a given predict-

able component spatial pattern. The ENSO index was

calculated by spatially averaging sea surface tempera-

ture anomalies over the Niño-3.4 region (58S–58N, 1208–
1708W). We used the NOAA Optimum Interpolation

0.258Daily Sea Surface TemperatureAnalysis (Reynolds

et al. 2007). There is a remarkable similarity among

all three time series (Fig. 11a), suggesting that not only

the first predictable component has skill but also that the

source of the forecast skill is ENSO. This result is true for

all model experiments as shown in Table 2 and it is also

consistent with previous studies (Jia et al. 2015; Osman and

Vera 2017). Figure 11b shows the correlation between the

time series of each predictable component of eachMinerva

andMetis experiments and the time series of the projected

observed DJF precipitation anomalies. The fact that only

the first predictable component of all experiments has sta-

tistically significant correlations (Fig. 11b) indicates that only

the first predictable component of all experiments has skill.

6. Conclusions

We evaluated the IFS_NEMO forecast skill and the

predictability of summer precipitation over South

America using hindcasts performed as part of the Mi-

nerva and Metis experiments. We find that the IFS_

NEMOhas skill in predicting summer precipitation over

northern South America and moderate skill over the La

Plata basin, consistent with previous studies. We also

find that the increase in the spatial resolution of the at-

mospheric component of IFS_NEMO (Minerva project)

has no significant impact on the model’s forecast skill of

summer precipitation over South America. However, the

increase in the spatial resolution of both the atmospheric

and oceanic components of the IFS_NEMO (Metis runs)

led to significant changes in signal and noise variance as

well as in the signal-to-noise ratio. This suggests that

ocean resolution may have an impact on the signal-to-

noise ratio in atmospheric variables. A more thorough

understanding of this behavior, including the role played

by parameterizations of unresolved atmospheric and

oceanic physical processes, is desirable.

Considering the predictability of large-scale patterns

of summer precipitation, the most predictable pattern

consists of a dipole between northern and southern

South America. The source of forecast skill for this

large-scale pattern is ENSO. Jia et al. (2015) found that

high-resolution dynamical model simulations combined

with the use of predictable component analysis led to

significant skill in the seasonal prediction of precipitation.

Although, our results partially support these findings,

they are not supportive of increasing horizontal resolu-

tion beyond what was already achieved in the Minerva

T639 with 18 NEMO. Further increases in resolution will

likely not lead to improved seasonal skill unless other

FIG. 11. (a) Time series of the main predictable component of

experiment Minerva T319, projected CPC_UNI DJF precipitation

anomalies, and ENSO index. (b) Correlation between the time

series of each predictable component of each Minerva and Metis

experiments and the time series of the projected CPC_UNI DJF

precipitation anomalies.

TABLE 2. Correlations between the time series of the first predictable component for each experiment (expt) and observations (obs).

Obs

Expt

Minerva T319 Minerva T639 Minerva T1279 Metis Tco199 Metis Tco639

Precipitation CPC_UNI 0.88 0.91 0.90 0.92 0.89

Niño-3.4 index 0.94 0.93 0.92 0.94 0.95
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aspects of the model are developed to take advantage of

the increase in resolution.

It is worth mentioning that we should not support the

inference that, because the model derives its skill from

ENSO, then a coupledmodel can be abandoned in favor

of a heuristic model. The dynamical model predicts

much more than a single ENSO pattern, and predicts

them in a physical consistent manner. Our results (Fig. 9)

shows that other predictable components are also sig-

nificant, which may or may not be related to ENSO. So, a

heuristic ENSO-only model may not skillfully predict as

much as the dynamical model. Also, a heuristic model

would require identifying the spatial response pattern

associated with ENSO. How would this pattern be iden-

tified without the dynamical model? Finally, the dynam-

ical model predictsmuchmore than precipitation—it also

predicts temperature, winds, and other variables that are

linked together through specific physical mechanisms

that can be diagnosed from the dynamical model. In con-

trast, a heuristic model may predict physically incompati-

ble relations between variables if it is derived using only

statistics and no physics.

Neither increasing spatial resolution nor the identifi-

cation of large-scale patterns of predictability through

the use of PrCA led to skillful forecasts over the core

region of the South American monsoon. Becker et al.

(2014) showed that there is potential for improving

predictability of precipitation in global coupled climate

models based on perfect model predictability estimates.

However, our results suggest that skillful seasonal fore-

casts of the South American monsoon would depend on

factors other than increasing spatial resolution. Future

studies should investigate ways to improve the IFS_

NEMO forecast skill for the South Atlantic convergence

zone, given that this phenomenon is likely associatedwith

the large noise variance over central and southeastern

Brazil. Seasonal prediction of precipitation remains a

challenge for state-of-the-art climate models. Positive

benefits of increasing model resolution might be more

evident in other atmospheric fields and/or lead times.
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